Licensed Electrical Inspector Theory (LEIT) Assessment Sample Paper (April 2024)
 Marking Guide

Questions 1-14: Standards, Regulations and the Act

Question 1.

Answer: No, the ESR system shall not be installed in hazardous areas
Reference Document: AS/NZS 3000:2018
Clause Number: 3.16(d)
Question 2.
Answer: Identified by marking of its location on the switchboard at which the circuits supply the pool or spa originate, or other permanent location.

Reference Document: AS/NZS 3000:2018
Clause Number: 5.6.2.6.3(b)

Question 3.

Answer: Carry 125\% of the continuous full load motor current and open the circuit in not less that 20 s at 600% of the full load motor current.

Reference Document: AS/NZS 3000:2018
Clause Number: 7.2.5.6.2 (b) (i) (ii)

Question 4.

Answer: 120 minutes (an answer of 2 hours also acceptable) (2 marks)
Reference document: AS/NZS 3000:2018 (1 mark)
Clause number: H1.3 Table H1 (2 marks)

Question 5.

Answer: IP23 (2 marks)
Reference Document: AS/NZS 3012:2019 (1 mark)
Clause Number: 2.3.2.1(b) (2 marks)

Question 6.

Answer: Each socket outlet on a service pillar shall be identified by suitable indelible means to indicate the site that it is intended to supply.
(2 marks)
Reference Document: AS/NZS 3001.1:2022
Clause Number: 2.4.6.3
(2 marks)

Question 7.

Answer:
(a) By a competent person who has tools, testing equipment and personal protective equipment that -
(i) are suitable for the work; and
(ii) have been properly tested; and
(iii) are maintained in good working order; and
(b) in accordance with a safe work method statement prepared for the work.

Reference Document: Electrical Safety (General) Regulations 2019
Clause Number: 511 (1) (a) (b)

Question 8.

Answer: At the origin of every circuit and at each point where a reduction occurs in the current carrying
capacity of the conductors.
Reference Document: AS/NZS 3000:2018
Clause Number: 2.5.1.3

Question 9.

Answer: No
Reference Document: AS/NZS 3004.1:2014
Clause Number: 1.6.4(b)

Question 10.

Answer: All elements for which the classification is sought, including any joints or components forming part of the wiring system.

Reference Document: AS/NZS 3013:2005
Clause Number: Appendix A4.1

Question 11.

Answer: 3000mm or 3 metres
Reference Document: Electrical Safety (General) Regulations 2019
Clause Number 303(2)(b)

Question 12.

Answer: 60m
Reference Document: AS/NZS 3002:2021
Clause Number: 2.7.5.4.3 Table 3.1

Question 13.

Answer: connected to the electricity supply
Reference Document: Electricity Safety Act 1998
Clause Number: 45(1)

Question 14.

Answer: A residual current device or an isolating transformer
Reference Document: AS/NZS 4836:2023
Clause Number: 3.4

Question 15. Voltage Drop

Mains Heaviest loaded phase: Red phase 550A
$\mathrm{T} 41 \mathrm{Vc}=0.467 \mathrm{~V} / \mathrm{A} . \mathrm{m}$
$\mathrm{I}=550 / 2=275 \mathrm{~A}$
$V_{D}=(15 \times 275 \times 0.467 / 1000=1.93 V$
Single phase voltage drop $1.93 / \sqrt{ } 3=1.11 \mathrm{~V}$

Submains Heaviest loaded phase: blue phase 63A
$\mathrm{T} 41 \mathrm{Vc}=2.43 \mathrm{mV} / \mathrm{A} . \mathrm{m}$
$\mathrm{V}_{\mathrm{D}}=(45 \times 63 \times 2.43) / 1000=6.89 \mathrm{~V}$
Single phase voltage drop $6.89 / \sqrt{ } 3=3.98 \mathrm{~V}$
FSC
$\mathrm{T} 42 \mathrm{Vc}=15.6 \times 1.155=18.02 \mathrm{mV} / \mathrm{A} . \mathrm{m}$
$I=20 / 2=10 A \quad$ (From AS/NZS 3000:2018 clause 3.6.2.exception 1; it is not necessary to quote this clause but must use correct current value based on this clause).
$V_{D}=35 \times 10 \times 18.02=6.31 \mathrm{~V}$

Total volts lost (single phase) $=1.11+3.98+6.31=11.4 \mathrm{~V}$
Voltage at the terminals $230-11.4=218.6 \mathrm{~V}$
The installation complies.

Question 16. Cable Operating Temperature

$\left(\mathrm{I} / I_{R}\right)^{2}=\left(\Theta_{o}-\Theta_{A}\right) /\left(\Theta_{R}-\Theta_{A}\right) \quad$ (This formula may be located in AS/NZS 3008.1.1 Clause 4.4)
Transposed for cable operating temperature $\Theta_{o}=\left(I o / I_{R}\right)^{2} x\left(\Theta_{R}-\Theta_{A}\right)+\Theta_{A}$
$\Theta_{\circ}=(120 / 280)^{2} \times(90-25)+25$
$=36.9^{\circ} \mathrm{C}$
(i) The cable operating temperature is $36.9^{\circ} \mathrm{C}$
(ii) The effect would be to lower the value of V_{c}.

Question 17. Prospective Fault Current

$I_{\text {(fault current at transformer) }}=\frac{750,000}{(400 \times \sqrt{ } 3)} \times \underline{100}=18,042 A$	(2 marks)
$Z_{\text {(transformer) }}=230 / 18042=0.01275 \Omega$	

Question 18. Circuit Breaker Selection

$\mathrm{la}=0.8 \mathrm{UoSphSpe} \quad$ (This formula may be located in AS/NZS 3000 clause B5.2.2) Lmaxp(Sph+Spe)
$\mathrm{la}=0.8 \times 230 \times 50 \times 16$
$160 \times 22.5 \times 10^{-3}(50+16)$
$\mathrm{la}=619.5 \mathrm{~A}$
Type B la $=4 \mathrm{x}$ rated current

$$
=4 \times 100=400 \mathrm{~A}
$$

Type C la $=7.5 \times$ rated current

$$
=7.5 \times 100=750 \mathrm{~A}
$$

Type D la $=12.5 \mathrm{x}$ rated current

$$
=12.5 \times 100=12,500 \mathrm{~A}
$$

Therefore a Type B must be used.

Question 19. Clearing Time

$t=\underline{K_{e} I_{r}} \quad$ (This formula may be located in AS/NZS 3000 clause 2.5.5.3)
If ${ }^{1.5}$
$I_{r}=1800 A$
$I_{f}=30 \%$ of $27 \mathrm{kA}=0.3 \times 27,000=8100 \mathrm{~A}$
$\mathrm{t}=\underline{250 \times 1800}$
$8100^{1.5}$
$t=0.617$ seconds

Question 20. Earth Size

$S=\sqrt{ }\left(I^{2} t / K^{2}\right) \quad$ (This formula may be located in AS/NZS 3000 clause 5.3.3.1.3)
K is taken from Table 52 AS/NZS 3008.1.1 with an initial temp of 25° (note: earth cables do not normally carry current therefore the initial temperature is always the ambient temperature of $25^{\circ} \mathrm{C}$ or $40^{\circ} \mathrm{C}$ for earthing conductors, and a final temp of 250° (from Table 53).
$K=179$
(2 marks: 1 mark for Table no, 1 mark for value)
$S=\sqrt{ }\left(7000^{2} \times 0.4 / 179^{2}\right)$
$=24.7 \mathrm{~mm}^{2}$
Use $25 \mathrm{~mm}^{2}$ cable

Question 21. Circuit Breaker and Fuse Ratings

a) for a circuit breaker
$\mathrm{I}_{\mathrm{B}} \leq \mathrm{I}_{\mathrm{N}} \leq \mathrm{I}_{\mathrm{z}}$
$125 \leq \mathrm{I}_{\mathrm{N}} \leq 133$ Any circuit breaker with a rating between 125 and 133 inclusive may be used, therefore may use 125A or 130A
b) for a HRC fuse
$\mathrm{I}_{\mathrm{B}} \leq \mathrm{I}_{\mathrm{N}} \leq 0.9 \mathrm{Iz}$
$125 \leq I_{N} \leq 0.9 \times 133$
$125 \leq \mathrm{I}_{\mathrm{N}} \leq 119.7$ not possible, therefore a HRC fuse cannot be used.
Question 22. Cable Selection

T14: $\mathrm{C} 23=251 \mathrm{~A}$	$(2$ marks $)$
$\times 2=502 \mathrm{~A}$	$(1$ mark $)$
$\mathrm{T} 25(2)=0.87$	$(1$ mark $)$
Answer Part $(\mathrm{a})=436.7 \mathrm{~A}$	$(1$ mark $)$
T29: Rating factor 1.07 applied	$(1$ mark
Answer Part (b) new current rating $=467.3 \mathrm{~A}$	$(1$ mark $)$

Question 23. Discrimination

$\mathrm{C}_{1} \geq 1.5 \times \mathrm{C}_{2 \text { maximum permissible setting }}$
$600 \geq 1.5 \times \mathrm{C}_{2 \text { maximum permissible setting }}$
$\mathrm{C}_{2 \text { maximum permissible setting }}=600 / 1.5=400 \mathrm{~A}$
Max permissible $=400 \mathrm{~A}$

